本书以机器学习基础知识做铺垫,深入剖析XGBoost的原理、分布式实现、模型优化、深度应用等。第1~3章使读者对机器学习算法形成整体认知,了解如何优化模型以及评估预测结果,并熟悉常用机器学习算法的实现原理和应用,如线性回归、逻辑回归、决策树、神经网络、支持向量机等。第4章借助实际案例,讲解如何通过XGBoost解决分类、回归、排序等问题,并介绍了XGBoost常用功能的使用方法。第5~7章是本书的重点,从理论推导与源码层面深入剖析XGBoost,涵盖XGBoost原理与理论证明、分布式XGBoost的实现、XGBoost各组件的源码解析。...
链接检测中。。
本站内容来源于网盘资源爬虫采集。多多搜盘不复制、传播、储存任何网盘资源,也不提供资源下载服务,链接会跳转至该网盘,资源的安全性与有效性请您自行辨别。如您发现任何侵权或违规内容,欢迎通过举报功能联系我们,我们将及时处理。